
Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 1 © Andrew Davison 2017

Part 3: Draw & Impress Modules

Chapter 15. Complex Shapes

This chapter looks at three complex topics involving

shapes: connecting rectangles, shape composition, and

drawing Bezier curves.

1. Connecting Two Rectangles

A line can be drawn between two shapes using a

LineShape. But it's much easier to join the shapes with a

ConnectorShape, which can be attached precisely by

linking its two ends to glue points on the shapes. Glue points are the little blue circles

which appear on a shape when you use connectors in Draw. They occur in the middle

of the upper, lower, left, and right sides of the shape, although it's possible to create

extra ones.

By default a connector is drawn using multiple horizontal and vertical lines. It's

possible to change this to a curve, a single line, or a connection made up of multiple

lines which are mostly horizontal and vertical. Figure 1 shows the four types linking

the same two rectangles.

Figure 1. Different Styles of Connector.

Grouper.java contains code for generating the top-left example in Figure 1:

Topics: Connecting Two

Rectangles; Shape

Composition (grouping,

binding, and

combining); Combining

with Dispatches;

Undoing Composition;

Bezier Curves (simple

and complex)

Example folders: "Draw

Tests" and "Utils"

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 2 © Andrew Davison 2017

// Grouper.java

public static void main (String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Draw.createDrawDoc(loader);

 if (doc == null) {

 System.out.println("Draw doc creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 Lo.delay(1000); // need delay or zoom may not occur

 GUI.zoom(doc, GUI.ENTIRE_PAGE);

 XDrawPage currSlide = Draw.getSlide(doc, 0); //access first page

 System.out.println("\nConnecting rectangles ...");

 XNameContainer gStyles = Info.getStyleContainer(doc, "graphics");

 connectRectangles(currSlide, gStyles);

 : // code for grouping, binding, and combining shape,

 : // discussed later

 Lo.saveDoc(doc, "grouper.odg");

 Lo.closeDoc(doc);

 Lo.closeOffice();

}

The connectRectangles() function creates two labeled rectangles, and links them with

a standard connector. The connector starts on the bottom edge of the green rectangle

and finishes at the top edge of the blue one (as shown in the top-left of Figure 1). The

method also prints out some information about the glue points of the blue rectangle.

// in Grouper.java

private static void connectRectangles(XDrawPage currSlide,

 XNameContainer gStyles)

{

 // dark green rectangle with shadow and text

 XShape greenRect = Draw.drawRectangle(currSlide,

 70, 180, 50, 25);

 Props.setProperty(greenRect, "FillColor",

 Lo.getColorInt(java.awt.Color.GREEN.darker()));

 Props.setProperty(greenRect, "Shadow", true);

 Draw.addText(greenRect, "Green Rect");

 // (blue, the default color) rectangle with shadow and text

 XShape blueRect = Draw.drawRectangle(currSlide,

 140, 220, 50, 25);

 Props.setProperty(blueRect, "Shadow", true);

 Draw.addText(blueRect, "Blue Rect");

 // connect the two rectangles; from the first shape to the second

 XShape connShape = Draw.addConnector(currSlide,

 greenRect, Draw.CONNECT_BOTTOM,

 blueRect, Draw.CONNECT_TOP);

 // Draw.setStyle(connShape, gStyles, "objectwitharrow");

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 3 © Andrew Davison 2017

 Props.setProperty(connShape, "LineWidth", 100); // 1mm

 Props.setProperty(connShape, "FillColor", 7512015);// dark blue

 // report the glue points for the blue rectangle

 GluePoint2[] gps = Draw.getGluePoints(blueRect);

 if (gps != null) {

 System.out.println("Glue Points for blue rectangle");

 for(int i=0; i < gps.length; i++) {

 Point pos = gps[i].Position;

 System.out.println(" Glue point " + i + ": (" +

 pos.X + ", " + pos.Y + ")");

 }

 }

} // end of connectRectangles()

Note that Draw.addText() is used to label the shapes.

Draw.addConnector() links the two rectangles based on glue point names supplied as

arguments. These names are defined in the Draw class:

// in the Draw class

public static final int CONNECT_TOP = 0;

public static final int CONNECT_RIGHT = 1;

public static final int CONNECT_BOTTOM = 2;

public static final int CONNECT_LEFT = 3;

Draw.addConnector() creates a ConnectorShape object and sets several of its

properties. A simplified inheritance hierarchy for ConnectorShape is shown in Figure

2, with the parts important for connectors drawn in red.

Figure 2. The ConnectorShape Hierarchy.

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 4 © Andrew Davison 2017

Unlike many shapes, such as the RectangleShape, ConnectorShape doesn't have a

FillProperties class; instead it has ConnectorProperties (see lodoc

ConnectorProperties), which holds most of the properties used by

Draw.addConnector(). addConnector() is defined as:

// in the Draw class

public static XShape addConnector(XDrawPage slide,

 XShape shape1, int fromConnect,

 XShape shape2, int toConnect)

{

 XShape xConnector = addShape(slide, "ConnectorShape", 0,0,0,0);

 XPropertySet props = Lo.qi(XPropertySet.class, xConnector);

 try {

 props.setPropertyValue("StartShape", shape1);

 props.setPropertyValue("StartGluePointIndex", fromConnect);

 props.setPropertyValue("EndShape", shape2);

 props.setPropertyValue("EndGluePointIndex", toConnect);

 props.setPropertyValue("EdgeKind", ConnectorType.STANDARD);

 // STANDARD, CURVE, LINE, LINES

 }

 catch(Exception e)

 { System.out.println("Could not connect the shapes"); }

 return xConnector;

} // end of addConnectorShape()

Draw.addShape() is called with a (0,0) position, zero width and height. The real

position and dimensions of the connector are set via its properties. "StartShape" and

"StartGluePointIndex" specify the starting shape and its glue point, and "EndShape"

and "EndGluePointIndex" define the ending shape and its glue point. "EdgeKind"

specifies one of the connection types from Figure 1.

Grouper.java's connectRectangles() has some code for retrieving an array of glue

points for a shape:

// in connectRectangles() in Grouper.java

GluePoint2[] gps = Draw.getGluePoints(blueRect);

Draw.getGluePoints() converts the shape into an XGluePointsSupplier, and calls its

getGluePoints() method to retrieve an indexed container of GluePoint2 objects. To

simplify the access to the points data, this structure is returned as an array:

public static GluePoint2[] getGluePoints(XShape shape)

{

 XGluePointsSupplier gpSupp =

 Lo.qi(XGluePointsSupplier.class, shape);

 XIndexContainer gluePts = gpSupp.getGluePoints();

 int numGPs = gluePts.getCount(); // should be 4 by default

 if (numGPs == 0) {

 System.out.println("No glue points for this shape");

 return null;

 }

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 5 © Andrew Davison 2017

 GluePoint2[] gps = new GluePoint2[numGPs];

 for(int i=0; i < numGPs; i++) {

 try {

 gps[i] = Lo.qi(GluePoint2.class, gluePts.getByIndex(i));

 }

 catch(com.sun.star.uno.Exception e)

 { System.out.println("Could not access glue point " + i); }

 }

 return gps;

} // end of getGluePoints()

connectRectangles() doesn't do much with this data, aside from printing out each glue

points coordinate. They're specified in 1/100 mm units relative to the center of the

shape.

Figure 1 shows that connectors don't have arrows, but this can be remedied by

changing the connector's graphics style. The "graphics" style family is obtained by

Info.getStyleContainer(), and passed to connectRectangles():

// in main() of Grouper.java

XNameContainer gStyles = Info.getStyleContainer(doc, "graphics");

connectRectangles(currSlide, gStyles);

Inside connectRectangles(), the connector's graphic style is changed to use arrows:

// in connectRectangles() of Grouper.java

Draw.setStyle(connShape, gStyles, "objectwitharrow");

Props.setProperty(connShape, "LineWidth", 50); // 0.5 mm

Props.setProperty(connShape, "FillColor", 7512015);// dark blue

The "objectwitharrow" style creates thick black arrows, with the head at the 'from' end

of the connector (i.e. pointing at the green rectangle in my example). The line width

can be adjusted by setting the shape's "LineWidth" property (which is defined in the

LineProperties class), and its color with "FillColor". However, the change to

"FillColor" has no effect for some reason, and so the arrow remains black, as shown

in Figure 3.

Figure 3. A Connector with an Arrow.

The arrow head is too big and extends too far over the shape. This can be modified by

changing the arrow name assigned to the connector's "LineStartName" property, and

by setting "LineStartCenter " to false. The place to find names for arrow heads is the

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 6 © Andrew Davison 2017

Line dialog box in LibreOffice's "Line and Filling" toolbar. The names appear in the

"Start styles" combobox, as shown in Figure 4.

Figure 4. The Arrow Styles in LibreOffice.

If the properties are set to:

// in connectRectangles() of Grouper.java

Props.setProperty(connShape, "LineStartCenter", false);

Props.setProperty(connShape, "LineStartName", "Short line arrow");

then the arrow head changes to that shown in Figure 5.

Figure 5. A More Beautiful Arrow.

An arrow can be added to the other end of the connector by adjusting its

"LineEndCenter" and "LineEndName" properties.

I found out about these "objectwitharrow" style properties by listing its property set

returned by Info.getStyleProps():

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 7 © Andrew Davison 2017

// in main() of Grouper.java

// print the "objectwitharrow" style in the "graphics" style family

Props.showObjProps("Objects with Arrow Graphics Style",

 Info.getStyleProps(doc, "graphics", "objectwitharrow"));

Alternatively, you can browse through the LineProperties class inherited by

ConnectorShape (shown in Figure 2; use lodoc LineProperties).

There's a drawback to calling Info.getStyleProps() – it causes Office to crash when

the Grouper.java exits. Office doesn't leave behind a zombie process, but an error

message appears on-screen.

2. Shape Composition

Office supports three kinds of shape composition for converting multiple shapes into a

single shape. The new shape is automatically added to the page, and the old shapes

are removed. The three techniques are:

1. grouping: the shapes form a single shape without being changed in any way.

Office has two mechanisms for grouping: the ShapeGroup shape and the

deprecated XShapeGrouper interface;

2. binding: this is similar to grouping, but also draws connector lines between the

original shapes;

3. combining: the new shape is built by changing the original shapes if they

overlap each other. Office supports four combination styles, called merging,

subtraction, intersection, and combination (the default).

Grouper.java illustrates these techniques:

// in main() of Grouper.java

// :

Size slideSize = Draw.getSlideSize(currSlide);

int width = 40;

int height = 20;

int x = (slideSize.Width*3)/4 - width/2;

int y1 = 20;

int y2 = slideSize.Height/2 - (y1 + height); // so separated

// int y2 = 30; // so overlapping

// create two ellipses, s1 and s2

XShape s1 = Draw.drawEllipse(currSlide, x, y1, width, height);

XShape s2 = Draw.drawEllipse(currSlide, x, y2, width, height);

Draw.showShapesInfo(currSlide);

// group/bind/combine the ellipses

groupEllipses(currSlide, s1, s2);

// bindEllipses(currSlide, s1, s2);

// combineEllipses(currSlide, s1, s2);

Draw.showShapesInfo(currSlide);

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 8 © Andrew Davison 2017

// 2. combine some rectangles

XShape compShape = combineRects(doc, currSlide);

Draw.showShapesInfo(currSlide);

Lo.delay(2000); // delay so user can see composition

 :

Two ellipses are created, and positioned at the top-right of the page.

Draw.showShapesInfo() is called to supply information about all the shapes on the

page:

Draw Page shapes:

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 0

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 1

 Shape service: com.sun.star.drawing.ConnectorShape; z-order: 2

 Shape service: com.sun.star.drawing.EllipseShape; z-order: 3

 Shape service: com.sun.star.drawing.EllipseShape; z-order: 4

The two rectangles and the connector listed first are the results of calling

connectRectangles() earlier in Grouper.java. The two ellipses were just created in the

code snipper given above.

2.1. Grouping Shapes

Grouper.java calls groupEllipses() to group the two ellipses:

// in Grouper.java

XShape s1 = Draw.drawEllipse(currSlide, x, y1, width, height);

XShape s2 = Draw.drawEllipse(currSlide, x, y2, width, height);

groupEllipses(currSlide, s1, s2);

groupElllipses() is:

// in Grouper.java

private static void groupEllipses(XDrawPage currSlide,

 XShape s1, XShape s2)

{

 XShape shapeGroup = Draw.addShape(currSlide, "GroupShape",0,0,0,0);

 XShapes shapes = Lo.qi(XShapes.class, shapeGroup);

 shapes.add(s1);

 shapes.add(s2);

} // end of groupEllipses()

The GroupShape is converted to an XShapes interface so the two ellipses can be

added to it. Note that GroupShape has no position or size; they are determined from

the added shapes.

An alternative approach for grouping is the deprecated XShapeGrouper, but it

requires a few more lines of coding. An example can be found in the Developer's

Guide, at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Drawings/Grouping,_Com

bining_and_Binding (use loguide "Grouping, Combining and Binding").

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 9 © Andrew Davison 2017

The on-screen result of groupEllipses() is that the two ellipses become a single shape,

as poorly shown in Figure 6.

Figure 6. The Grouped Ellipses.

There's no noticeable difference from two ellipses until you click on one of them,

which causes both to be selected as a single shape.

The change is better shown by a second call to Draw.showShapesInfo(), which

reports:

Draw Page shapes:

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 0

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 1

 Shape service: com.sun.star.drawing.ConnectorShape; z-order: 2

 Shape service: com.sun.star.drawing.GroupShape; z-order: 3

The two ellipses have disappeared, replaced by a single GroupShape.

2.2. Binding Shapes

Instead of groupEllipses(), it's possible to call bindEllipses() in Grouper.java:

// in Grouper.java

XShape s1 = Draw.drawEllipse(currSlide, x, y1, width, height);

XShape s2 = Draw.drawEllipse(currSlide, x, y2, width, height);

bindEllipses(currSlide, s1, s2);

The function is defined as:

// in Grouper.java

private static void bindEllipses(XDrawPage currSlide,

 XShape s1, XShape s2)

{

 XShapes shapes = Lo.createInstanceMCF(XShapes.class,

 "com.sun.star.drawing.ShapeCollection");

 shapes.add(s1);

 shapes.add(s2);

 XShapeBinder binder = Lo.qi(XShapeBinder.class, currSlide);

 binder.bind(shapes);

} // end of bindEllipses()

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 10 © Andrew Davison 2017

An empty XShapes shape is created, then filled with the component shapes. The

shapes inside XShapes are converted into a single object XShapeBinder.bind().

The result is like the grouped ellipses but with a connector linking the shapes, as in

Figure 7.

Figure 7. The Bound Ellipses.

The result is also visible in a call to Draw.showShapesInfo():

Draw Page shapes:

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 0

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 1

 Shape service: com.sun.star.drawing.ConnectorShape; z-order: 2

 Shape service: com.sun.star.drawing.ClosedBezierShape; z-order: 3

The two ellipses have been replaced by a closed Bezier shape.

In my opinion, it's easier to link shapes explicitly with connectors, using code like that

in connectRectangles() from section 1. If the result needs to be a single shape, then

grouping (not binding) can be applied to the shapes and the connector.

2.3. Combining Shapes with XShapeCombiner

Grouper.java calls combineEllipse() to combine the two ellipses:

// in Grouper.java

XShape s1 = Draw.drawEllipse(currSlide, x, y1, width, height);

XShape s2 = Draw.drawEllipse(currSlide, x, y2, width, height);

combineEllipses(currSlide, s1, s2);

combineEllipses() employs the XShapeCombiner interface, which is used in the same

way as XShapeBinder:

// in Grouper.java

private static void combineEllipses(XDrawPage currSlide,

 XShape s1, XShape s2)

{

 XShapes shapes = Lo.createInstanceMCF(XShapes.class,

 "com.sun.star.drawing.ShapeCollection");

 shapes.add(s1);

 shapes.add(s2);

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 11 © Andrew Davison 2017

 XShapeCombiner combiner = Lo.qi(XShapeCombiner.class, currSlide);

 combiner.combine(shapes);

} // end of combineEllipses()

The combined shape only differs from grouping if the two ellipses are initially

overlapping. Figure 8 shows that the interesecting areas of the two shapes is removed

from the combination.

Figure 8. Combining Shapes with XShapeCombiner.

The result is also visible in a call to Draw.showShapesInfo():

Draw Page shapes:

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 0

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 1

 Shape service: com.sun.star.drawing.ConnectorShape; z-order: 2

 Shape service: com.sun.star.drawing.ClosedBezierShape; z-order: 3

The two ellipses have again been replaced by a closed Bezier shape .

2.4. Richer Shape Combination by Dispatch

The drawback of XShapeCombiner that it only supports combination, not merging,

subtraction, or intersection. I had to implement those effects by using dispatches, as

shown in combineRects() in Grouper.java:

// in Grouper.java

private static XShape combineRects(XComponent doc,

 XDrawPage currSlide)

{

 System.out.println("\nCombining rectangles ...");

 XShape r1 = Draw.drawRectangle(currSlide, 50, 20, 40, 20);

 XShape r2 = Draw.drawRectangle(currSlide, 70, 25, 40, 20);

 XShapes shapes = Lo.createInstanceMCF(XShapes.class,

 "com.sun.star.drawing.ShapeCollection");

 shapes.add(r1);

 shapes.add(r2);

 return Draw.combineShape(doc, shapes, Draw.COMBINE);

 // Draw.MERGE, Draw.SUBTRACT, Draw.INTERSECT, Draw.COMBINE

} // end of combineRects()

The dispatching is performed by Draw.combineShape(), which is passed an array of

XShapes and a constant representing one of the four combining techniques.

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 12 © Andrew Davison 2017

Figure 9 shows the results when the two rectangles created in combineRects() are

combined in the different ways.

Figure 9. The Four Ways of Combining Shapes.

The merging change in Figure 9 is a bit subtle – notice that there's no black outline

between the rectangles after merging; the merged object is a single shape.

When combineRects() returns, Draw.showShapesInfo() reports:

Draw Page shapes:

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 0

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 1

 Shape service: com.sun.star.drawing.ConnectorShape; z-order: 2

 Shape service: com.sun.star.drawing.ClosedBezierShape; z-order: 3

 Shape service: com.sun.star.drawing.PolyPolygonShape; z-order: 4

The combined shape is a PolyPolygonShape, which means that the shape is created

from multiple polygons.

One tricky aspect of combining shapes with dispatches is that the shapes must be

selected prior to the dispatch being sent. After the dispatch has been processed, the

selection will have been changed to contain only the single new shape. This approach

is implemented in combineShape():

public static XShape combineShape(XComponent doc,

 XShapes shapes, int combineOp)

{

 // select the shapes for the dispatch to apply to

 XSelectionSupplier selSupp = Lo.qi(XSelectionSupplier.class,

 GUI.getCurrentController(doc));

 selSupp.select(shapes);

 if (combineOp == MERGE)

 Lo.dispatchCmd("Merge");

 else if (combineOp == INTERSECT)

 Lo.dispatchCmd("Intersect");

 else if (combineOp == SUBTRACT)

 Lo.dispatchCmd("Substract"); // misspelt!

 else if (combineOp == COMBINE)

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 13 © Andrew Davison 2017

 Lo.dispatchCmd("Combine");

 else {

 System.out.println("Did not recognize op: " +

 combineOp + "; using merge");

 Lo.dispatchCmd("Merge");

 }

 Lo.delay(500); // give time for dispatch to be processed

 // extract the new single shape from the modified selection

 XShapes xs = Lo.qi(XShapes.class, selSupp.getSelection());

 XShape combinedShape = null;

 try {

 combinedShape = Lo.qi(XShape.class, xs.getByIndex(0));

 }

 catch(com.sun.star.uno.Exception e)

 { System.out.println("Could not get combined shape"); }

 return combinedShape;

} // end of combineShape()

The shapes are selected by adding them to an XSelectionSupplier. The requested

dispatch is sent to the selection, and then the function briefly sleeps to ensure that the

dispatch has been processed. An XShapes object is obtained from the changed

selection, and the new PolyPolygonShape is extracted and returned.

3. Undoing a Grouping/Binding/Combining

Any shapes which have been grouped, bound, or combined can be ungrouped,

unbound, or uncombined. On screen the separated shapes will look the same as

before, but may not have the same shape types as the originals.

The main() function of Grouper.java shows how the combination of the two

rectangles can be undone:

// in Grouper.java

 :

XShape compShape = combineRects(doc, currSlide);

 :

XShapeCombiner combiner = Lo.qi(XShapeCombiner.class, currSlide);

combiner.split(compShape); // split the rectangles

Draw.showShapesInfo(currSlide);

The combined rectangles shape is passed to XShapeCombiner.split() which removes

the combined shape from the slide, replacing it by its components.

Draw.showShapesInfo() shows this result:

Draw Page shapes:

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 0

 Shape service: com.sun.star.drawing.RectangleShape; z-order: 1

 Shape service: com.sun.star.drawing.ConnectorShape; z-order: 2

 Shape service: com.sun.star.drawing.ClosedBezierShape; z-order: 3

 Shape service: com.sun.star.drawing.PolyPolygonShape; z-order: 4

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 14 © Andrew Davison 2017

 Shape service: com.sun.star.drawing.PolyPolygonShape; z-order: 5

The last two shapes listed are the separated rectangles, but represented now by two

PolyPolygonShapes.

XShapeCombiner.split() only works on shapes that were combined using a

"COMBINE" dispatch. Shapes that were composed using merging, subtraction, or

intersection, can not be separated.

For grouped and bound shapes, the methods for breaking apart a shape are

XShapeGrouper.ungroup() and XShapeBinder.unbind(). For example:

XShapeGrouper grouper = Lo.qi(XShapeGrouper.class, currSlide);

grouper.ungroup(compShape);

4. Bezier Curves

The simplest Bezier curve is defined using four coordinates, as in Figure 10.

Figure 10. A Cubic Bezier Curve.

P0 and P3 are the start and end points of the curve (also called nodes or anchors), and

P1 and P2 are control points, which specify how the curve bends between the start

and finish. A curve using four points in this way is a cubic Bezier curve, the default

type in Office.

The code for generating Figure 10 is in drawCurve() in BezierBuilder.java:

// in drawCurve() in BezierBuilder.java

private static XShape drawCurve(XDrawPage currSlide)

{

 Point[] pathPts = new Point[4];

 PolygonFlags[] pathFlags = new PolygonFlags[4];

 pathPts[0] = new Point(1000, 2500);

 pathFlags[0] = PolygonFlags.NORMAL;

 pathPts[1] = new Point(1000,1000); // control point

 pathFlags[1] = PolygonFlags.CONTROL;

 pathPts[2] = new Point(4000,1000); // control point

 pathFlags[2] = PolygonFlags.CONTROL;

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 15 © Andrew Davison 2017

 pathPts[3] = new Point(4000,2500);

 pathFlags[3] = PolygonFlags.NORMAL;

 return Draw.drawBezier(currSlide, pathPts, pathFlags, true);

} // end of drawCurve()

Most of the curve generation is done by Draw.drawBezier(), but the programmer must

still define two arrays and a boolean. The pathPts[] array holds the four coordinates,

and pathFlags[] specify their types. The final boolean argument of Draw.drawBezier()

indicates whether the generated curve is to be open or closed.

Figure 11 shows how the curve is rendered.

Figure 11. The Drawn Bezier Curve.

Draw.drawBezier() uses the isOpen boolean to decide whether to create an

OpenBezierShape or a ClosedBezierShape. Then it fills a PolyPolygonBezierCoords

data structure with the coordinates and flags before assigning the structure to the

shape's "PolyPolygonBezier" property:

public static XShape drawBezier(XDrawPage slide,

 Point[] pts, PolygonFlags[] flags, boolean isOpen)

{

 if (pts.length != flags.length) {

 System.out.println("Mismatch in lengths of

 points and flags array");

 return null;

 }

 String bezierType = isOpen ? "OpenBezierShape" :

 "ClosedBezierShape";

 XShape bezierPoly = addShape(slide, bezierType, 0, 0, 0, 0);

 // create space for one Bezier shape

 PolyPolygonBezierCoords aCoords = new PolyPolygonBezierCoords();

 // for shapes formed by one *or more* Bezier polygons

 aCoords.Coordinates = new Point[1][];

 aCoords.Flags = new PolygonFlags[1][];

 aCoords.Coordinates[0] = pts;

 aCoords.Flags[0] = flags;

 Props.setProperty(bezierPoly, "PolyPolygonBezier", aCoords);

 return bezierPoly;

} // end of drawBezier()

A PolyPolygonBezierCoords object can store multiple Bezier curves, but

Draw.drawBezier() only assigns one curve to it. Each curve is defined by an array of

coordinates and a set of flags.

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 16 © Andrew Davison 2017

4.1. Drawing a Simple Bezier

The hard part of writing drawCurve() in BezierBuilder.java is knowing what

coordinates to put into pathPts[]. Probably the 'easiest' solution is to use a SVG editor

to draw the curve by hand, and then extract the coordinates from the generated file.

As the quotes around 'easiest' suggest, this isn't actually that easy since a curve can be

much more complex than my example. A real example may be composed from

multiple curves, straight lines, quadratic Bezier sub-curves (i.e. ones which use only a

single control point between anchors), arcs, and smoothing. The official specification

can be found at http://www.w3.org/TR/SVG/paths.html, and there are many tutorials

on the topic, such as http://www.svgbasics.com/curves.html and

http://www.w3schools.com/svg/svg_path.asp.

Even if you're careful and only draw curves like mine, the generated SVG is not quite

the same as the coordinates used by Office's PolyPolygonBezierCoords. However, the

translation is fairly straightforward, once you've done one or two.

One good online site for drawing simple curves is

http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html,

developed by Craig Buckler. It restricts you to manipulating a curve made up of two

anchors and two controls, like mine, and displays the corresponding SVG path data,

as in Figure 12.

Figure 11. Drawing a Curve Online.

Figure 12 is a bit small – the path data at the top-right is:

<path d="M100,250 C100,100 400,100 400,250" />

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 17 © Andrew Davison 2017

The path contains two operations: "M" and "C". "M" moves the drawing point to a

specified coordinate (in this case (100, 250)). The "C" is followed by three

coordinates: (100,100), (400, 100), and (400, 250). The first two are the control

points and the last is the end point of the curve. There's no start point since the result

of the "M" operation is used by default.

Translating this to Office coordinates means using the "M" coordinate as the start

point, and applying some scaling of the values to make the curve visible on the page.

Remember that Office uses 1/100 mm units for drawing. A simple scale factor is to

multiply all the numbers by 10, producing: (1000, 2500), (1000,1000), (4000, 1000),

and (4000, 2500). These are the numbers in Figure 10, and utilized by drawCurve() in

BezierBuilder.java.

4.2. Drawing a Complicated Bezier Curve

What if you want to draw a curve of more than four points? I use Office's Draw

application to draw the curve manually, save it as an SVG file, and then extract the

path coordinates from that file.

I use Draw because it generates path coordinates using 1/100 mm units, which saves

me from having to do any scaling.

You might be thinking that if Draw can generate SVG data then why not just import

that data as a Bezier curve into the code? Unfortunately, this isn't quite possible at

present – it's true that you can import an SVG file into Office, but it's stored as an

image. In particular, it's available as a GraphicObjectShape not a OpenBezierShape or

a ClosedBezierShape. This means that you cannot examine or change its points.

As an example of my approach, consider the complex curve in Figure 13 which I

drew in Draw and exported as an SVG file.

Figure 13. A Complex Bezier Curve, manually produced in Draw.

Details on how to draw Bezier curves are explained in the Draw user guide, at the end

of section 11 on advanced techniques.

The SVG file format is XML-based, so the saved file can be opened by a text editor.

The coordinate information for this OpenBezierShape is near the end of the file:

<g class="com.sun.star.drawing.OpenBezierShape">

 <g id="id3">

 <path fill="none" stroke="rgb(0,0,0)" d="M 5586,13954 C

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 18 © Andrew Davison 2017

5713,13954 4443,2905 8253,7477 12063,12049 8634,19415 15619,10906

22604,2397 11682,1381 10285,6334 8888,11287 21207,21447 8253,17002 -

4701,12557 11174,15986 11174,15986"/>

 </g>

</g>

The path consists of a single "M" operation, and a long "C" operation, which should

be read as a series of cubic Bezier curves. Each curve in the "C" list is made from

three coordinates, since the start point is implicitly given by the initial "M" move or

the end point of the previous curve in the list.

Copy the data and save it as two lines in a text file (e.g. in bpts2.txt):

M 5586,13954

C 5713,13954 4443,2905 8253,7477 12063,12049 8634,19415 15619,10906

22604,2397 11682,1381 10285,6334 8888,11287 21207,21447 8253,17002 -

4701,12557 11174,15986 11174,15986

BuildBezier.java contains some functions for reading in this data and building the

arrays required by Draw.drawBezier(). So when the following is called:

run BezierBuilder bpts2.txt

the curve shown in Figure 14 appears on a page.

Figure 14. The Curve Drawn by BuildBezier.java

The BuildBezier.java data-reading functions can only handle a single "M" and "C"

operation. If the curve you draw has straight lines, arcs, smoothing, or multiple parts,

then the SVG file will contain operations that my code cannot process.

However, the data-reading functions do recognize the "Z" operation, which specifies

that the curve should be closed. If "Z" is added as a new line at the end of the

bpts2.txt, then the closed Bezier curve in Figure 15 is generated.

Java LibreOffice Programming. Chapter 15. Complex Shapes Draft #2 (21st March 2017)

 19 © Andrew Davison 2017

Figure 15. The Closed Curve Drawn by BuildBezier.java

